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THEORY OF INTERACTION OF GRAVITY WAVES WITH HYDRODYNAMIC 

TURBULENCE 
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i. One of the practical problems in atmospheric and ocean dynamics is the study of 
the effect of vortex turbulence on the propagation of various types of waves (surface waves, 
sound, internal waves, etc.). Besides, it is necessary to differentiate the strictly hydro- 
dynamic turbulence from vortex motions accompanying waves [i, 2]. The numerous aspects of 
the interaction of sound with turbulence have been analyzed in fairly great detail so far 
(see [3-5] and the literature cited in them). The study of the vortex-wave turbulence with 
reference to the interaction of gravity waves with vortices is continued in this paper. It 
is worth emphasizing that unlike [3-5], the present problem has a number of special fea- 
tures associated with the fact that surface waves in deep water are dispersive, the phase 
velocity v~ is a function of wavelength %: vr (g is the acceleration of gravity, ~= 
%/2~). The logarithmic decrement for gravity waves propagating at the surface of a turbu- 
lent liquid has been found on the basis of computed matrix of interaction coefficients. An 
estimate of the characteristic phase correlation time and the time for making the wave 
field isotropic in elastic scattering have been obtained. The diffusion approximation has 
been used to analyze the effect of inelastic scattering on the development of isotropic 
wave packets as a function of frequency. The limits of the applicability of kinetic equa- 
tions to describe the mutual interaction of gravity waves in a turbulent medium have been 
explained. All these problems have been analyzed within the framework of a single formal 
scheme, viz., the Wyld diagram technique [6]. 

2. Consider the motion of an incompressible fluid with a free surface of infinite 
depth. We choose a coordinate system with the z axis vertically up. Let the surface shape 
be given by the function z = ~(r!, t) with the normal n ~ [I ~ (Vj~)~]-I/2y(--VI~, I). 

The kinematic boundary condition 

8~I8t + ( u v ~ ) ~  = Uz ( 2 . 1 )  

is satisfied at the free surface. It couples n to the fluid velocity u, which is governed 
by the equations 

8u/St + ( u v ) u  = --(I/p)Vp + g; (2.2) 

d i v  u ~ O. ( 2 . 3 )  

Here p is the pressure, p is the density, g is the acceleration of gravity. The system of 
equations (2.1)-(2.3) is completed by the dynamic boundary condition at the free surface* 

Plz=~ = 0 (2.4) 

(in which a constant atmospheric pressure is taken as the reference value) and the condition 
of boundedness of fields as z ~-oo. 

In such a system there are, in general, two types of motions: vortex motion (hydro- 
dynamic turbulence) and potential motion (surface waves). Hence it is convenient to divide 
the velocity field into two parts: 

u = u ~ - ~  - u t, r o t  u l  = O, d i v  u t = O, ( 2 . 5 )  

*Surface tension has been neglected here and in what follows. 
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in which u z can be expressed in the form u ~ = Vq0. 

Substituting (2.5) in the system (2.2), (2.3), we obtain the following equations for 
the vortex and potential components respectively: 

Out/~t + (u~v)u t _ _ _ v H _  (ufv)vT,__ (vq)v)ut; ( 2 . 6 )  

H = 8~18t + plp + gz + (U2)(V~)2; ( 2 . 7 )  

A q ) = 0 ,  --OO <% <'13, (p--+0 for Z--+--OO. ( 2 . 8 )  

Eliminating pressure from Eq. (2.7) and substituting the corresponding expressions 
in the dynamic boundary conditions (2.4), we find 

Ocp/at + g~] = --(i/2)(V~) 2 + Hlz=~. ( 2 . 9 )  

It is convenient to introduce velocity potential at the free surface ~(r•  t): ~(r• ~](r• t), t), 
as the reference variable. As shown in [7], for purely potential motion the quantities 
@:(r~, t) and N(r., t) form a canonical pair,* 

The expressions for ~:(r• t) follows from (2.9) using (2.1) 

a___~ t I [ am ~2 a~ u ~ a~ 
ot + g~ = - 7 (V~qS~ + ~ ,,-57/ - (uv_0 ~ ~ + ~ ~ + H I~=,v (2 .10)  

In order to determine the function H we take the divergence of Eq. (2.6) and using the 
condition div u ~ = 0, we get for H 

AH = --divR ~ --%, (2. ii) 

where R : ( u t v ) u  t ~ -  ( V q ) V ) u  t + ( u t v ) v q ) .  

Equation (2.11) 
nates 

is transformed to the Fourier form in terms of the transverse coordi- 

We have 

(O=/Oz 2 -- k2)llk = --%k. 

The general solution of the nonhomogeneous equation (2.12) is expressed as follows: 

0 

i y dziEk(z:,t)[em{(z-~1)_e-ik,(z-~O]. Hk (Z, t) = Czelk{z + C2e -Ik{z -7 
g 

{ : : H k ( %  , t)-->- e -]k{z C 2 2{k{ d%lXk(Zl, t )e Iktz: -{- dzl%k(z:,t)e Ikl(z-z:) 
--oo g 

As z§ -~ 

and the condition on boundedness leads to the relation 

(2.12) 

(2.13) 

0 

i y e[klzz. C 2 = ~ dz:%k (z:, t) ( 2 . 1 4 )  
--co 

Using (2.14) it is possible to rewrite Eq. (2.13) in the form 

0 

, I elkl(;-z0 (Zl, t) e -{k{(z-zl) 
z --oo 

The vertical component of Eq. (2.6) at z = 0 is used to determine the constant C:: 

0 

az ~ = { k [ C : - -  - T  = - -  \---$/- +Rz/k]~=o-~  - -  Mk. 
--oo 

*The Hamiltonian variables describing even nonpotential motion of the free surface are 

given in [8]. 
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We finally get the expression for H k 

0 0 

y t " Mk z 
Hk (z, t) -- 2 I kl I dzlxk (7"1' t) [O[kl(z-z1) -- e-lkJ(~-~9] ~ 7-~-/cosh Ik{z j dzj%k(zl, t)eIk'~l~--~-~e Ik' . (2 .15)  

E q u a t i o n s  ( 2 . 1 ) ,  ( 2 . 6 ) ,  ( 2 . 8 ) ,  and ( 2 . 1 0 )  a l o n g  w i t h  ( 2 . 1 5 )  r e p r e s e n t  t h e  o r i g i n a l  s y s -  
tem to describe the interaction of gravity waves with hydrodynamic turbulence. We make the 
following assumptions before computing the respective matrix coefficients for the relation- 
ship. First, we assume that the characteristic vertical turbulence length L t is much larger 
than the wavelength of surface waves X:L t >> ~. Second, we assume that the relation {utI<<vr 
is satisfied near the surface, which, as a rule, is observed in natural oceanic conditions 
(see e.g., [9]). It is well known [I0, Ii] that this assumption ensures weak interaction 
between waves and turbulence. 

Equations (2.1), (2.10) are brought to the following form for the k-mode: 

i r t y*(r• e-ikr•177 y~l( •177 
~k (t) (2n) ~ 

Complex amplitudes of normal modes ak, ~ are introduced in the standard manner [7]: 

n~ = ~ ~ - E - ( ~  + ~-~) ,  , ~  = - ~ ~ - - ~ ( a ~ -  ~*_~), 

where (Ok----~g{k[ is the dispersion law for gravity waves, and the equation of motion in 
the new variables has the form 

Ot ~- iO)kak = -- i Vkklk2aktak2 6 (k -- k~ -- k~) ~- ( 2 . 1 6 )  

+ 2~~;~ (k -- k~ + k:)] dk~dk~ -- 

- -  i y V~k2~ak~ak~a~35 (k -~ k~ -- k~ -- k~)dk~dk~dk 3- 

+ W~ Uk~U~8 (k + k l +  . 

'S The following relations between Pk and~k~ (2~) ~ ~(r• t) e-~kr•177 has been used in the conversion 

of equation from (2.1), (2.10) to (2.16): 

t ~lkl[[{k (Pk = ~k + f ]  kl ] ~kl~lk25 (k --  k I - -  k2) dkldk ~ -- ~- 

--  k21 + I k --  ka ] - -  I k I] ~kplkz'lka6 (k --  k, - -  k., -- ka) dk~dk~dka 

a The small parameter for the series expansion is ~ = with an accuracy to the order of ~k" 

p(~k/k)~ <<I, where E is the surface wave energy. For the horizontal component of the 

turbulent velocity field u~(t) i y (2n) ~ ~(r•177177177 it is possible to ob- 

tain the following equations in the k-mode* from Eq. (2.6) using Eq. (2.15): 

y OU~ot --2i p~v ukluk~ 0 . ~  *V~ (k -[- k 1 + k2) dkldk 2 - -  i Qkklk2 • ( 2 . 1 7 )  

• a*-k,)u~26 ( k - -  k l - -  k2) dkldk=. 

Terms of the type snan+luU, qnan+luU, vna n+3 which are small when compared to ~n are omitted 
from Eqs. (2.16), (2.17) in further analysis. 

*The incompressibility condition u zt (r• t) =- S div~l~ (r• r, t) dz" couples the vertical com- 
--oo 

portent of the turbulent velocity field to equation for horizontal components. 
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p~gY describes the interaction of turbulent fluctuations and is deter- The coefficient 
mined as follows: 

k(zk~ 
k2 ~ 

Matrix coefficients Vkk~k~, Ukk:k~ and Vkk~k=ka describing the mutual interaction processes 
of surface waves were found in [7]. We have computed the coefficients S~k~k=, ~k 8 and 

Q~ k ' describing the interaction of surface waves with the "horizontal" hydrodynamic 
turbulence. With these assumptions their explicit expressions have the form: 

i ~ l k l l k ] l  [ e  k ek~ ] V l k l k ~ k  ~ 

~ V ok: Q~,~ = ~ [ ( ~ )  ~ - ~ , ~ ] ,  

where S d e s c r i b e s  the  s c a t t e r i n g  of  s u r f a c e s  waves, and W and Q d e s c r i b e  the p r o c e s s e s  of  
d i s s i p a t i o n  and g e n e r a t i o n  of  waves by t u r b u l e n c e .  

3. Let us now proceed  to the  s t a t i s t i c a l  d e s c r i p t i o n  of  n o n l i n e a r  f i e l d s  u k and u~. 
For t h i s  purpose  the  fo l l owing  averaged c h a r a c t e r i s t i c s ,  v i z . ,  the  c o r r e l a t o r  p a i r s  a re  in -  
t roduced  in the k-~-mode 

and the Green' s function 

.,UkoUW~,I = .fk~8 (k -- k') 8 (o -- ~'), 

* \ n k ~ ( k  k ' ) ~ ( o  ~') N a k o a k ~ 0 ~  / ~ -- __ 

< 8u~~ .~  ~ 
6F~,~-~, = C k ~  ( k  - -  k ' )  6 ( ~  - -  ~') ,  

< 8%~ ~ = g k ~  " 8 / ~ , o ,  

The a u x i l i a r y  f u n c t i o n  G a8 k~ and gk d e s c r i b e  the  response  to the  v o r t e x  and p o t e n t i a l  com- 
ponents  of  the v e l o c i t y  f i e l d  to the  e x t e r n a l  a c t i o n  of  F ~  and flr i n t r o d u c e d  in the  
r i gh t -hand  s i d e  of  the  equa t i ons  of  motion (2 .16 ) ,  ( 2 .17 ) .  

In view of homogeneous and i s o t r o p i c  t u r b u l e n c e  in the h o r i z o n t a l  p l ane ,  the  s p e c t r a l  
t e n s o r  s c a n  b e  e x p r e s s e d  i n  t h e  f o r m  

Jk~ = :k~h~ ~, Gk~ = 

Dyson 's  equa t i ons  can be o b t a i n e d  in the  s t anda rd  manner [6] 
tics (3.1) 

(3.1) 

for the mean characteris- 

J ~ = I G ~  I ~ ~ ,  ~.~ = l g ~  I=~.~, 
G k~ = ( o  - -  ~ ' k ~ ) - L  g k ~  = ( e  - -  o k  - -  ~ k ~ )  - ~ .  

The first diagrams for Eke, ~k~ and dk~, ~ke, are shown in the figure where the correspond- 
ing correlator pairs and Green's function are also given. 

The vertex Tkklk~k 3 appears in the diagrams for turbulent wave and is determined as 
follows* : 

P 0 r Q w 

~k~ = y ", 
p p Q Q 

w Q s S 
7 T 

* I n  v i e w  o f  t h e  d i s p e r s i o n  l a w  f o r  g r a v i t y  w a v e s  t h e  t r i p l e  w a v e  i n t e r a c t i o n s  a r e  n o t  
resonant; these processes contribute to quadruple wave matrix elements [12]. 
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- -2  

- - 2  

I 

T T S S W W 

~:~j~O0 ~ ) ~ - -  ~ nkL 0 oo / ~ j ~ / ' - ~ . -  ~ 

s 
k~c~ ~ ,  gkco co . . . .  ~ .  

"* 0 A 

U--k2--k3k2k 8 U--k--klkkl 
Tkklk2k 3 ~ Vkklk2k 3 - -  2 r + COk, + (%+k I 

Vk2+kak2k3Vk-~klkkl 
�9 - - 2  

O)k+kl - -  (O k - -  (Ok1 

~/'klk3kl--k3Vk~kk'2--k - -  2 

(Ok2_ k ~- (O k - -  O)k2 

- - 2  

Vkk2k--k2"[Zk3klk3--kl 

(Oka_kl "~ 60kl - -  0u 

Vkl.k2kl--k2Vk3klk3--k 1 

O)k3_kl -]- O)kl - -  O)k3 

Vkk3k--k3Vk2klk2--kl 

(-ok2_kl -~- O)kl - -  O)k2 

The kinetic equation serves as the basis for the statistical description of wave motion 
and for this purpose principal use is made of the weak nonlinearity, the presence of dis- 
persion, and the assumption on the random nature of the phase of interacting waves. In the 
diagrammatic representation, the role of kinetic equation is played by the equation [13] 

A , 

which is equivalent to the Dyson equation for nk~. In the case of weak turbulence it is 
possible to limit to diagrams of second order with respect to the vertices Tkklkaka. Then 

the condition Ik--~Slk~dm=O leads to the stationary kinetic equation 

A 

0 = -- F k n  k -~  a ~ k ,  

where 

Fk = - -  Im a~ ~k' Sk = @k~ k. 

It is possible to use an analogous equation for hydrodynamic turbulence 

where the assumption on the nonrenormability of the vertex p~BT corresponds to the direct 
interaction model [14]. However, such an approximation is not satisfactory for describing 
the properties of turbulence in the inertial interval. This is because the initial diagram 
series for Ik~ and Ck~ possesses divergence of integrals in the region of small k, which 
physically stems from the effect of the transfer of small scale eddies by energy-carrying 
vortices. In order to describe the interaction of hydrodynamic "surface" waves it is there- 
fore necessary, following [15], to use the equations 

Ek~ = I m ( ~ k m J k m - ~ k o  G:o)  = O, (3.2) 

in which renormalization has been made to eliminate the kinematic effect of transfer. The 
terms in Eq. (3.2) are related to the original function as follows: 

= = < . - k ~ - k . > - ,  @ k ~  = <~)k~- -k~>~,  

where <...>u represents averaging with respect to the random velocity field at the arbitrary 

j. 
point r, t using Wyld's technique. As a result, the improved equation Lk~dm= 0 in the 

two dimensional case,* as shown in [17], allows an exact solution with Kolmogorov values for 
the indices. Explicit expressions for Green's function and the correlator pair for the 
velocity field (for a constant energy flux) is written in the form 

*The analysis of corresponding equations for 3-D turbulence is given in [16]. 
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Here v T and L are respectively the chacteristic horizontal velocity and the scale for the 
energy containing segment of the turbulence spectrum. 

4. One of the effects of the presence of hydrodynamic vortex turbulence is the attenu- 
ation of gravity waves. Attenuation occurs as a result of the direct absorption of surface 
energy by turbulence and also due to scattering. Consider now the first of these mecha- 
nisms. 

In order to find the logarithmic decrement Fdi s of gravity waves it is necessary to 
compute the contribution from the vertices W and Q to the imaginary part ~k~. Here it is 
sufficient to limit to the diagrams of the order WQ (see the diagram) since the diagrams 
containing WaQ 2, WQSn:, are small compared to VT/V ~. 

Analytical expression for rdi s in the present case has the form 

Fdis  = - -  I m  a k ~ k =  - -  I m  i' i~cz8 T[J',2 

X [6 (k~ - -  k 2 ~-  k)  6 (o)1 - -  ~% -~- {Ok) - -  6 (k~ - -  k~ - -  k)  6 (c% - -  

- -  r - -  COk) ] dkldkflo~ldo) 2. 

The basic contribution to the expression (4.1) comes from the integration in the region 
of scales k~, k2 ~ kT, where the complex frequency mT ~_ (VT/L)(kTL) 2/3 is of the order ~k' 
Taking into consideration that the turbulent wave number k T lies in the inertial interval 
L -I < k T < L-IRe 3/" (Re is the Reynolds number), or 

2 v~ 
V T 

g-T < k L  < --g~- Be, (4.2) 

i t  i s  p o s s i b l e  t o  e s t i m a t e  ( 4 . 1 )  i n  t h e  f o r m  

( 
rd i s  ~--- ~ (4 3) \ vr 

A comparison of rdis with the logarithmic decrement ro ----- 2~k: caused by molecular vis- 
2 

U T 
cosity ~, shows that rdi s ~ Fo when k0~L-!-~-L--Ile , and, consequenly, the dissipation 

process associated with direct wave energy absorption by turbulence dominates in the entire 
interval (4.2). 

For natural oceanic turbulence the decrement (4.3) is small since v T << v~. In the 
case of "artificial" turbulence caused by, e.g., a moving ship, wave dissipation can be 
appreciable (compare with [18]). 

5. In the region L -I < k < L-:Re 3/" is is necessary to consider the scattering of 
waves on turbulence. Firstly we find the logarithmic decrement of plane waves rk due to the 
energy transfer from the given wave to the scattering field. The diagram series for Okw 
which describes the wave scattering on turbulence is determined by the vertices S (see dia- 
gram) . 

In the range 1 < kL < (gL/v~) :/3, it is possible to limit to diagrams of the second 
order in vertices S. Then the damping is given by 

I m  O'kcOk = -- I m  ~ ~ B c~ Yk : - -  S k k l k S k l k k ~ g k z o ) l J k ~ o ~ s 6  (k  - -  k l  -{- ( 5 . 1 )  

-t- k2) 6 (O~k - -  COl - -  r dkldkflr162 %. 

Substituting Green's function in (5.1) and considering that VT/V ~ << i, we get 

~k~ " ~ d~~ (5 2)  -Tr 
2 dk L "-~ --~ 

The energy containing vortices k' ~ L -~ make major contribution to the Kolmogorov spectrum 
(3.3). Hence it follows from (5.2) 

F k N~ kuz (kLvr/ugr)  ~ - ~--1/2'-5/~r -- ~ ~ ~ ,  (5.3) 
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where Vg r = d~k/dk is the group velocity of the surface waves. The expression obtained by 
us for Pk confirms the result obtained earlier in [i0] without detailed computation of ma- 
trix elements. In scattering processes when the total energy of gravity waves is con- 
served, the quantity ~cor = rk ~ can be considered to be an estimate of the characteristic 
time decrement for the phase correlation coefficient of the wave field in the interval 1 < 
kL < (gL/v~)i/3. 

We qualitatively obtain (5.3) using similar arguments as in [4], considering the sur- 
face wave scattering on vortices of size kT I. During one scattering event the Doppler shift 
in the frequency Am k ~ kvT(k T) leads to a drop in the phase of gravity waves by an amount 
A~ ~ kvT(kT)/kTvgr, where vT(k T) ~ vT(kTL) -I/a is the "Kolmogorov" angular velocity of the 
vortex. N -~ KTVgrT scatterings take place in time T when the phase change increases 
times due to the diffusive nature of the process. The corresponding time for the breakdown 
of phase correlations can be estimated from the condition Aq0VN- ~ i: 

�9 2~--1/27.5/2r 

~-~ ~ ' ~  ~ ~- (5.4) (kTL)513 

Since the major contribution to the scattering of plane waves is made by vortices with k T 
L-I, then (5.4) corresponds to the result (5.3). 

The case kL > (gL/v~) I/~ requires separate consideration since it is necessary to 
formally consider diagrams with four and more vertices S. 

Let us study the growth in the intensity of wave packets with finite width hk during 
scattering on turbulence, which is described by the nonstationary kinetic equation 

1 " A 
- ~ n  k = -- r k n  k -~ ~lq)k~ k. (5.5) 

In the interval 1 < kL < (gL/v~)i/3, using the diagram with vertices SS (see diagram) for 

(P~h% and taking into account Eq. (5.1) for Pk we get from (5.5) 

�9 R y{k{'Kl' (~k , C Ok I ) (~k .j._ (Ok,) 
n k - ~ Y  ~ ~ k  a _  {kl{ k% ~-~k~__ {kli kl~ X (5.6)  

• - 6 ( k  - -  k ,  + - -  + 

I f  the  n a t u r e  of  p lane  wave s c a t t e r i n g  i s  de t e rmined  by the  i n t e r a c t i o n  wi th  energy  c o n t a i n -  
ing v o r t i c e s  l e a d i n g  to  the  s c a t t e r i n g  a t  ang le s  of  the  o rde r  1/kL << 1, then  f o r  the  wave 
packe t  of  width  Ak > L - 1 ,  v o r t i c e s  from the  i n e r t i a l  i n t e r v a l  a l r e a d y  p l ays  an a p p r e c i a b l e  
r o l e ,  whi le  the  c h a r a c t e r i s t i c  s c a t t e r i n g  angle  Aes ~ Ak/k. The l o g a r i t h m i c  decrement  
Fk(Ak) c o r r e s p o n d i n g  to  t h i s  can be found by n o t i n g  t h a t  in  t h i s  case  the r e g i o n  wi th  l e n g t h  
scales k2 ~ k makes the major contribution to Pk in the integration with respect to k~: 

v2k2L (5.7) ~ (Ak) = rk (A~) = d ~  
(AkL) 518 

It is possible to estimate from Eq. (5.7) the time for making the wave isotropic, which 
is determined by the last stage of scattering, when Ak ~ k: 

"-~ I (kL)513 

Consider now the inelastic scattering leading to the development of wave packets in 
terms of frequencies. Since the variation in frequency during scattering is small (A~k/~ k 
VT/V ~ << I), it is possible to use diffusion approximation for ~k" Further in studying in- 
elastic scattering we limit our attention to isotropic distributions. Then it follows from 
(5.6) 

ank 
anh a Oh~-~%, (5 .9)  
ot  om~ 

where 

789 



Oh = - ~  d ~ '  ~ ~ J h , ~ , ~  �9 

L--1 - - ~  

E q u a t i o n  (5 .9 )  assumes t h a t  the  c h a r a c t e r i s t i c  t ime  f o r  i s o t r o p i f i c a t i o n  (5 .8 )  i s  much l e s s  
than  the  d i f f u s i o n  t ime T d i f  d e t e ~ i n e d  by the  c o e f f i c i e n t  D k.  S ince  we have  the  f o l l o w i n g  
e s t i m a t e  f o r  Dk on Kolmogorov s p e c t r u m  (3 .3 )  

then the characteristic time Tdi f given by 

IkL:/ " : 

is (kL)~/3(v~/vT) ~ times more than ~is, which also substantiates the initial assumption. 

6. In conclusion we discuss the question of the limits of applicability of kinetic 
equation for the description of mutual interaction of gravity waves in a turbulent medium. 
First of all we note that the mutual interaction of surface waves in a turbulent medium is 
possible only when the characteristic time for nonlinear wave interaction Tin t is less than 

--I 

the characteristic time rdi s. Using the following expression from [19] for Tin t 

_ [~k U 

we find from the inequality Zint > Fdis 

~( % ~I~ 
E >  ps, \k-~vT] . (6.1) 

Upon satisfaction of condition (6.1), the nonlinear interaction of the waves becomes 
defined; this interaction can be described by the kinetic equation (19) using diagram series 
Ok~' ~ k~ with vertices TT (see figure). 

This approximation will be correct if the necessary condition on the width of Ak bundles 
of the surface disturbance [13] is satisfied: 

-~ " (Ak)~ ~ ~ .  (6 2) T d ~ ~/~ 

Expression (6.2) follows formally from the condition that the diagrams renormalizing 
the vertex Tkk~k~k 3 (see diagram) are small. 

Consequently, in this case an additional condition besides (6.2) appears for the 
applicability of the kinetic equation: 

Tmt<rk, t < k L <  ~ . (6.3) 

Expressing (6.3) in terms of energy density of surface waves, we get 

E < E c r  =~u~(v~kLI1/2 vr ~<~L<(g-~L i '/3 
\ v-~] v-~' \ v~ ] " (6.4) 

It is significant that the width of the wave packet does not enter the inequality (6.4) and 
in the scattering process the phase becomes random even for a solitary wave. 

In fulfilling the criteria (6.1)-(6.4) the following Zakharov-Filonenko spectrum [19] 
will be established as a result of nonlinear mutual interaction of gravity waves 

E~ ~ ~-~:, (6.5) 

Here the  r o l e  of  t u r b u l e n c e  w i l l  l e a d  to  the  e f f e c t  o f  i s o t r o p i f i c a t i o n  o f  wave p a c k e t s  i n  
t he  c h a r a c t e r i s t i c  t ime  ~ is  ( s ee  ( 5 . 8 ) ) .  For  s u f f i c i e n t l y  l a r g e  wave a m p l i t u d e s ,  s t r o n g l y  
n o n l i n e a r  p r o c e s s e s  come i n t o  p l a y  and the  t h e o r y  o f  weak t u r b u l e n c e  becomes i n a p p l i c a b l e .  
~ e  b r e a k i n g  of  waves a t  t he  c r e s t  i s  such a p r o c e s s  i n  the  g r a v i t a t i o n a l  f i e l d .  As a r e -  
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suit of breaking in this range of wave numbers the spectral distribution (6.5), apparently, 
should transform to the Phillips spectrum [20] 

E h ~ ' k  -3. 

In actual conditions the above picture may be significantly complicated due to the 
influence of wind, interaction of gravity waves with capillaries and so on. 

The author gratefully acknowledges the attention given to the work by M. I. Rabinovich 
and useful discussions with A. A. Novikov. 
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